Refuerzo antisísmico: cómo funciona y por qué es importante

Refuerzo antisísmico: cómo funciona y por qué es importante

My list

Author | Jaime Ramos

La Tierra, como planeta rocoso, está viva bajo nuestros pies. Si bien es más que complicado sentir la actividad geológica, en ocasiones se manifiesta de forma abrupta y peligrosa. Los terremotos y seísmos se encargan de transmitir esos latidos tectónicos y han obligado al ser humano a estar preparado.

En función de la mayor o menor magnitud de los seísmos según la escala de Richter, se suceden anualmente entre una y dos decenas de terremotos que superan los ocho grados, hasta más de 2.000.

Qué significa adaptar una edificación o reforzarla ante seísmos

El riesgo se incrementa en determinadas zonas o puntos geológicos más comprometidos. El peligro se eleva porque en muchas regiones existen grandes asentamientos poblacionales. Ciudades como Manila, Yakarta, Los Ángeles, San Francisco, Lima, Teherán, Estambul o Tokio poseen una gran actividad sísmica, aunque no siempre se note en sus suelos.

La capital nipona, por ejemplo, se encuentra asentada en el área donde se producen el 80% de los terremotos de mayor magnitud. Las estimaciones de la Universidad de Tokio apuntan que la ciudad tiene un 98% de probabilidades de sufrir un gran terremoto en los próximos 30 años.

seismic retrofitting 129

Es en estas áreas donde más se ha cultivado la ingeniería sísmica como instrumento elemental de protección urbana a través de la arquitectura. En las últimas décadas, se han desarrollado una metodología conocida como Performance Based Earthquake Engineering para identificar la respuesta de las tecnologías antisísmicas.

Qué es un refuerzo antisísmico

El denominado refuerzo antisísmico es una aplicación de la ingeniería sísmica que, mediante técnicas concretas, implementa las estructuras internas y externas de las edificaciones. El objetivo se dirige a dar con una arquitectura que ofrezca más resistencia ante las catástrofes geológicas.

Técnicas de refuerzo antisísmico

Para ello, existen numerosas técnicas a nivel global. Se suelen agrupar en torno a tres funcionalidades de protección: por disipación, de resistencia y por deformación o ductilidad.

Disipación energética

Las técnicas de refuerzo antisísmico por disipación persiguen canalizar o amortiguar la energía de un terremoto de modo que no incida en la salud del edificio y pueda descargarse en forma de movimiento o calor. Suelen ser eficaces para la denominada resonancia sísmica que perdura tras los momentos iniciales de un terremoto.

seismic retrofitting 130

Una derivada y referencia mundial de esta técnica se encuentra en el rascacielos Taipei 101, en Taiwán. Una esfera dorada de 728 toneladas hace las veces de TMD (amortiguador de masa sintonizado), manteniendo el equilibrio de los 508 metros de edificación ante posibles ondas sísmicas.

Resistencia sísmica

Se trata de estructuras que elevan la resistencia ante el impacto de un terremoto. Entre las diferentes técnicas, destacan los post-tensores externos, que hacen uso del hormigón prefabricado, o los más llamativos refuerzos externos a la propia edificación, en forma de columnas o estructuras masivas.

Se tiende a recurrir a esta última en edificios históricos o más antiguos que no aceptan grandes reformar internas. El Rostrevor House de Wellington, en Nueva Zelanda se vale de esta técnica para paliar el efecto de los más de 30.000 seísmos de todas las magnitudes que vive este país cada año.

Ductilidad ante el seísmo

Las técnicas de refuerzo por ductilidad reconocen que un seísmo causará daños en el edificio. La piedra angular supone dirigir la energía hacia elementos estructurales que puedan absorber tal energía y deformarse sin que afecte al resto o suponga un mayor riesgo de derrumbe.

Las 73 plantas del edificio Wilshire Grand Center en Los Ángeles (Estados Unidos) protegen su equilibrio gracias a aleaciones SMA (con memoria de forma) de refuerzo antisísmico. Ante un terremoto, absorben parte de la energía y se deforman en consecuencia, para luego volver a su estado previo.

El desarrollo de estas técnicas permite minimizar los efectos dañinos de las catástrofes en las ciudades. Forman parte esencial de la nueva planificación urbana que toda ciudad inteligente ha de incorporar para garantizar la seguridad del nuevo urbanismo.

Imágenes | iStock/Skarie20, iStock/TokioMarineLife, Someformofhuman

Related content

Recommended profiles for you

JG
Joan Miquel Garcia
Covestro
Senior Project Manager
VM
Victor Merce
ACCIO - Catalonia Trade & Investment
Team Leader International Public Procurement Unit
LO
Leo Ortega
Parsons International
GIS Lead
PN
Philippe Nihoul
Nednih
Journalist
FA
Farhana Afroz
NEW ONE
YC
Yoojeong Choi
Chokwang Paint Ltd
Clerk/Global division
AF
Alessandro Francia
Digil\'Arch
Owner
NW
Noreen Whysel
CUNY NYC College of Technology
CV
Charmaine Vincent
Kuehne + Nagel Pvt Ltd
Deputy General Manager, Vertical Lead-Industrial Solutions
BH
Bassel Hamadeh
FM
Flávio Mota
VIVA Domus
CEO
TL
THIAGO LARANGEIRA
Codex
FP
Fredy Purnomo
Binus University
Dean of School
JV
Jack Kenneth Valderrama Zurita
Gobierno Digital
JC
Judithd Coll
Modi s.l
My position is as a busu¡iness developer by public administrations
AM
Andi Emil Mattotorang
FIQ\'S MULTI CORP
Direktur
MM
Miguel Miyashiro
3Led Lumitec SRL
Manager
DF
Diva Aisyaliani Ramadhisa Fadli
Trisakti University
Collage Student
MN
MOH. MUHDIR NURSALEH
smk negeri 7 buru
WAKIL
RZ
Ricky Zhu
cipta kreasi
General Manager