Reconocimiento facial y lucha contra el crimen: por qué los sesgos pueden llevar a una justicia llena de prejuicios

Reconocimiento facial y lucha contra el crimen: por qué los sesgos pueden llevar a una justicia llena de prejuicios

My list

Autor | Arantxa HerranzCada vez más ciudades apuestan por los sistemas de reconocimiento facial como una medida para luchar contra el crimen. Moscú ha sido una de las últimas, pero antes que a la capital rusa estos sistemas llegaron a ciudades como Chicago o a países enteros como ChinaUna medida que no ha estado exenta de polémica, puesto que los defensores de las libertades civiles y la privacidad temen que su tecnología acabe convirtiéndose en un arma de vigilancia masiva y, sobre todo, discriminatoria. Europa, de hecho, sopesa prohibir el uso de estos sistemas de reconocimiento facial en espacios públicos durante cinco años hasta que se determine cómo evitar, precisamente, sus posibles abusos.El problema no es tanto que estamos todavía ante un sistema imperfecto (en China, por ejemplo, hay cierta controversia tras constatarse que las entradas a edificios con reconocimiento facial están impidiendo el paso a personas con mascarillas para evitar el coronavirus); parte de la polémica es que el reconocimiento facial tiene importantes sesgos raciales, sexuales y de edad.

Hombres blancos de mediana edad, los más reconocibles

Investigadores del Instituto Nacional de Estándares y Tecnología descubrieron que los algoritmos de identificación facial son mucho mejores con las personas descritas como de raza blanca que con las afroamericanas y asiáticas. Tanto que a los errores en la identificación de estas personas tienen de 10 a 100 veces más probabilidades de fallar que con las caras caucásicas.Entre una base de datos de fotos utilizadas por las agencias policiales en los Estados Unidos, las tasas de error más altas se produjeron en la identificación de los nativos americanos, según el estudio. Además, los algoritmos tuvieron más dificultades para identificar a las mujeres que a los hombres.Para hacer este estudio, el organismo puso a prueba casi 200 algoritmos de reconocimiento facial de casi 100 desarrolladores, utilizando cuatro colecciones de fotografías con más de 18 millones de imágenes de más de 8 millones de personas. 

Los sesgos, maximizados en la inteligencia artificial

El problema de los sesgos no es nuevo. Ni único de la inteligencia artificial. Pero el gran problema es que los algoritmos pueden, mal programados, maximizar y potenciar esos sesgos que afectan a la raza, edad, condición y orientación sexual o religión de las personas.Y no afecta únicamente al reconocimiento facial: una investigación reciente también ha demostrado que un algoritmo utilizado ampliamente en los hospitales de EE.UU. para asignar atención médica a los pacientes ha discriminado sistemáticamente a las personas negras.En muchos casos, la IA puede reducir la interpretación subjetiva de los datos de los humanos, ya que los algoritmos aprenden a considerar solo las variables que mejoran su precisión predictiva, en función de los datos de entrenamiento utilizados. Al mismo tiempo, una amplia evidencia sugiere que los modelos de IA pueden incorporar prejuicios humanos y sociales y desplegarlos a escala. Por ello, tanto humanos como máquinas deben esforzarse para evitar el sesgo y, con ellos, la discriminación. El sesgo en la IA se produce sobre todo en los datos o en el modelo algorítmico, por lo que la industria busca desarrollar sistemas de IA en los que podemos confiar. Y, para ello, se hace necesario y entrenar estos sistemas con datos imparciales, desarrollando además algoritmos que puedan explicarse fácilmente para su posible análisis cuando se detecten falsos positivos.Imágenes | Fauxels, teguhjatipras

Related content

Recommended profiles for you

RD
Ruth Delvin
LABU
RG
Roman Gaufman
Tether Technology
Founder & CEO
JP
Juliana Palácios
iCities
JP
John Andri Purba
Mola TV
Po box
KT
Kevin Taylor
Axis Communications
Smart City Segment Development Manager
WB
Wissam Benmusa
Libyan petroleum institute
Supervisor of the Monitoring and Electronic Control Unit
VH
Volodymyr Huk
ELKO Ukraine
Business Development Manager
HD
Heng rang DJQucikSystemagrianger
ONE DRAGON CORPORATION
MA
Mir Mahmood Ali
Konnektiply
LD
Lianne Dela Cruz
N/A
AR
Achmad Riffai Murdianto Riffai
Rifalindo Wijaya Pratama
Pemilik perusahaa
MS
Marcelo Szeer
Vianet telecomunicações e Internet
Ceo
PF
Pablo Filomeno
Feeder
Co-Founder & CEO
CZ
Cheng Zhao Lin
Hong Kong Polytechnic University
DV
diana visintini
SAJARA
i am the leader . owner. and organiser of different aspects of the Company providing exellence in se
​K
​Noël Kennedy
TUBR
FA
Flora Abilova
UNISEM CO., LTD.
Assistant Manager
EM
Eric Marotel
International advising & consulting
Partner
MR
Massimiliano Raponi
Intratel sp. z o.o.
UB
UttammartCity Byragoni
AEYE SoftLabs Private Limited
Founder & CEO