Reconocimiento facial y lucha contra el crimen: por qué los sesgos pueden llevar a una justicia llena de prejuicios

Reconocimiento facial y lucha contra el crimen: por qué los sesgos pueden llevar a una justicia llena de prejuicios

My list

Autor | Arantxa HerranzCada vez más ciudades apuestan por los sistemas de reconocimiento facial como una medida para luchar contra el crimen. Moscú ha sido una de las últimas, pero antes que a la capital rusa estos sistemas llegaron a ciudades como Chicago o a países enteros como ChinaUna medida que no ha estado exenta de polémica, puesto que los defensores de las libertades civiles y la privacidad temen que su tecnología acabe convirtiéndose en un arma de vigilancia masiva y, sobre todo, discriminatoria. Europa, de hecho, sopesa prohibir el uso de estos sistemas de reconocimiento facial en espacios públicos durante cinco años hasta que se determine cómo evitar, precisamente, sus posibles abusos.El problema no es tanto que estamos todavía ante un sistema imperfecto (en China, por ejemplo, hay cierta controversia tras constatarse que las entradas a edificios con reconocimiento facial están impidiendo el paso a personas con mascarillas para evitar el coronavirus); parte de la polémica es que el reconocimiento facial tiene importantes sesgos raciales, sexuales y de edad.

Hombres blancos de mediana edad, los más reconocibles

Investigadores del Instituto Nacional de Estándares y Tecnología descubrieron que los algoritmos de identificación facial son mucho mejores con las personas descritas como de raza blanca que con las afroamericanas y asiáticas. Tanto que a los errores en la identificación de estas personas tienen de 10 a 100 veces más probabilidades de fallar que con las caras caucásicas.Entre una base de datos de fotos utilizadas por las agencias policiales en los Estados Unidos, las tasas de error más altas se produjeron en la identificación de los nativos americanos, según el estudio. Además, los algoritmos tuvieron más dificultades para identificar a las mujeres que a los hombres.Para hacer este estudio, el organismo puso a prueba casi 200 algoritmos de reconocimiento facial de casi 100 desarrolladores, utilizando cuatro colecciones de fotografías con más de 18 millones de imágenes de más de 8 millones de personas. 

Los sesgos, maximizados en la inteligencia artificial

El problema de los sesgos no es nuevo. Ni único de la inteligencia artificial. Pero el gran problema es que los algoritmos pueden, mal programados, maximizar y potenciar esos sesgos que afectan a la raza, edad, condición y orientación sexual o religión de las personas.Y no afecta únicamente al reconocimiento facial: una investigación reciente también ha demostrado que un algoritmo utilizado ampliamente en los hospitales de EE.UU. para asignar atención médica a los pacientes ha discriminado sistemáticamente a las personas negras.En muchos casos, la IA puede reducir la interpretación subjetiva de los datos de los humanos, ya que los algoritmos aprenden a considerar solo las variables que mejoran su precisión predictiva, en función de los datos de entrenamiento utilizados. Al mismo tiempo, una amplia evidencia sugiere que los modelos de IA pueden incorporar prejuicios humanos y sociales y desplegarlos a escala. Por ello, tanto humanos como máquinas deben esforzarse para evitar el sesgo y, con ellos, la discriminación. El sesgo en la IA se produce sobre todo en los datos o en el modelo algorítmico, por lo que la industria busca desarrollar sistemas de IA en los que podemos confiar. Y, para ello, se hace necesario y entrenar estos sistemas con datos imparciales, desarrollando además algoritmos que puedan explicarse fácilmente para su posible análisis cuando se detecten falsos positivos.Imágenes | Fauxels, teguhjatipras

Related content

Recommended profiles for you

AA
Anniina Autero
City of Tampere
Project Manager EU/UIA Smart urban security and event resilience SURE-project 2019-2022
MR
MIQUEL RIBAS GARAU
Familiar
Senior
EC
Enders Christopher
Messe Frankfurt Exhibition GmbH
Director Brand Management and Brand Development Technology
AF
Alessandra Faria
AXIS Communications
Managing Director
RS
Rushabh Sargam
ISME
Student
KK
Khumaeroh Khumaeroh
SIAP
Chief Marketing Officer
FF
Flavia flaa
school
EK
Ekaterina Khrobostova
Inoventica
Manager
GS
Gil Shaked
Mer Group
Product Manager
KJ
Kailyn Johnson
NA
YS
Yohiko Sugita
Axis Communications K.K.
2 years of membership
JC
Jorge Luis Chavez
Ubicuity Services
CEO vision, planning, investment and strategic partner
EL
Elvis Law
Axis Communications
Business Development Manager, Smart Cities
JN
Josefina Nonell Lopez
City of Rotterdam
Projectmanager Smart City & Digital Economy
JP
Javier Pineda
So Lighting S.à.r.l.
TD
tibo de wolf
TITI IT
AT
Anshuman Tiwari
Surguja Digital Works
Sales and marketing
PB
Pamela Bishop
Ascendax
BM
Bashir Mohamed Mohamed
Tiba Engineering Technology Company
General manager
OS
Ofer Simonov
Motorola Solutions
sales manager